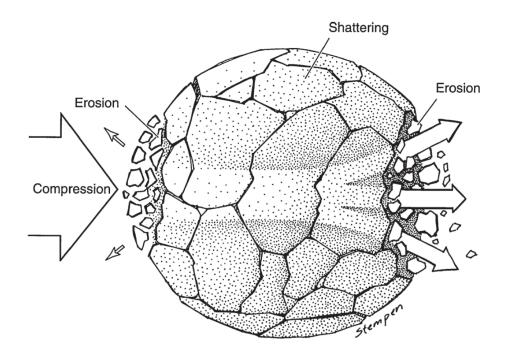
SURGICAL MANAGEMENT of URINARY CALCULI

Farshad Gholipour

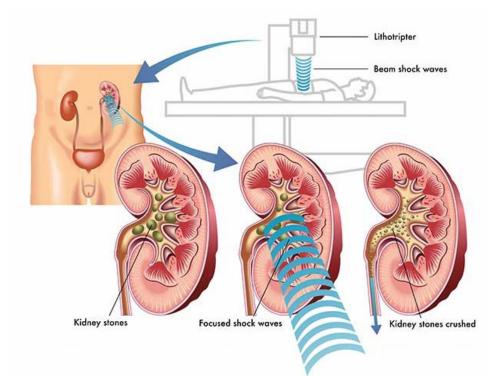
Assistant Professor of Urology

Isfahan Kidney Disease Research Center

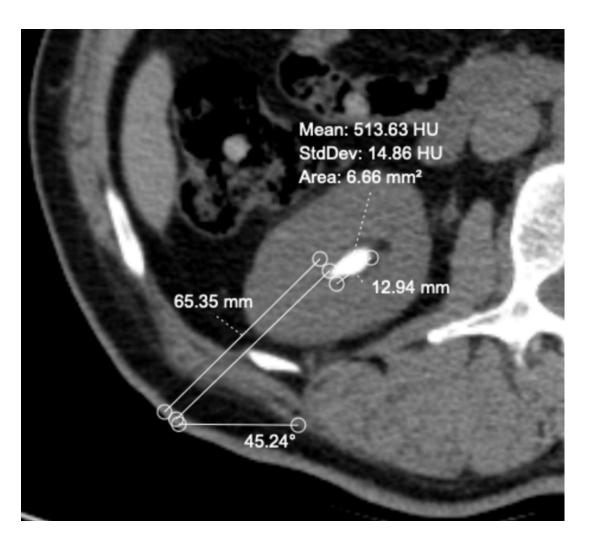


SHOCKWAVE LITHOTRIPSY

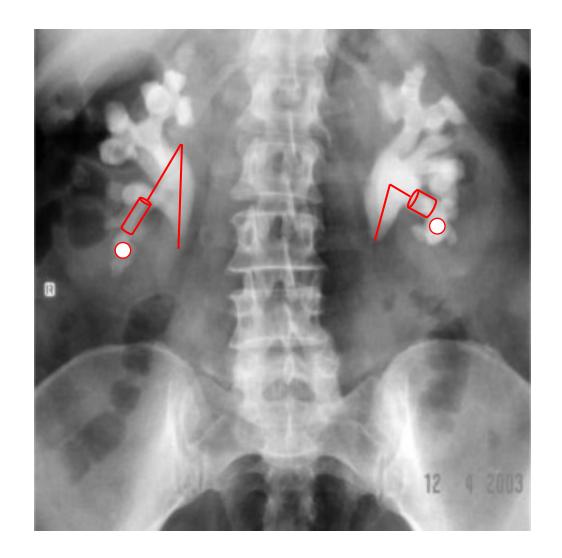
SHOCKWAVE LITHOTRIPSY (SWL)


- Revolutionized the Tx of urinary stones
- First clinical application: 1980 (Dornier Co.)

- Success depends on
 - Efficacy of the lithotripter
 - Stone features
 - Size
 - Location (ureteral, pelvic or calyceal)
 - Composition
 - Patient's habitus
 - Performance of SWL



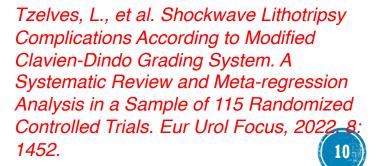
- Factors that impair successful stone treatment by SWL
 - Steep infundibular-pelvic angle
 - Long calyx
 - Long skin-to-stone distance
 - Narrow infundibulum
 - Shock wave-resistant stones (calcium oxalate monohydrate, brushite, or cystine)


SSD & HU

ANATOMICAL INDICES

- Contraindications
 - Pregnant women
 - Large abdominal aortic aneurysms
 - Uncorrectable bleeding tendency
 - Urinary tract infection
 - Severe skeletal malformations and severe obesity
 - Anatomical obstruction distal to the stone
- Caution
 - Pacemaker

EAU Guidelines on urolithiasis 2025


- No standard antibiotic prophylaxis before SWL is recommended
- Prophylaxis is recommended when
 - Internal stent placement ahead of anticipated treatments
 - In the presence of increased bacterial burden
 - Indwelling catheter
 - Nephrostomy tube
 - Infectious stones

EAU Guidelines on urolithiasis 2025

- Fewer complications compared to PCNL and ureteroscopy
- Relationship between SWL and hypertension or diabetes is unclear

Complications			%
Related to stone	Steinstrasse		4 – 7
fragments	Regrowth of residual fragments		21 – 59
	Renal colic		2 – 4
Infections	Bacteriuria in non- infection stones		7.7 – 23
	Sepsis		1 – 2.7
Tissue effect	Renal	Haematoma, symptomatic	< 1
		Haematoma, asymptomatic	4 – 19
	Cardiovascular	Dysrhythmia	11 – 59
		Morbid cardiac events	Case reports
	Gastrointestinal	Bowel perforation	Case reports
		Liver, spleen haematoma	Case reports

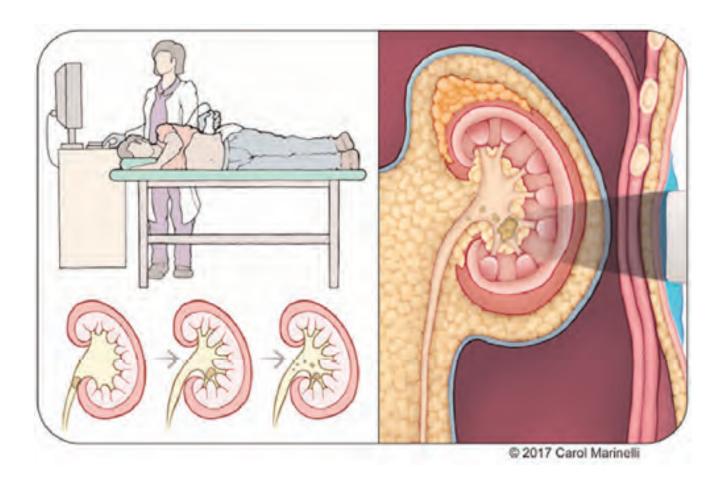
BOX 94.1 Acute Renal Side Effects: Risk Factors for Shock Wave Lithotripsy

Age	Diabetes mellitus	
Obesity	Coronary heart disease	
Coagulopathies	Preexisting hypertension	
Thrombocytopenia	Body mass index >30 or <21.5	

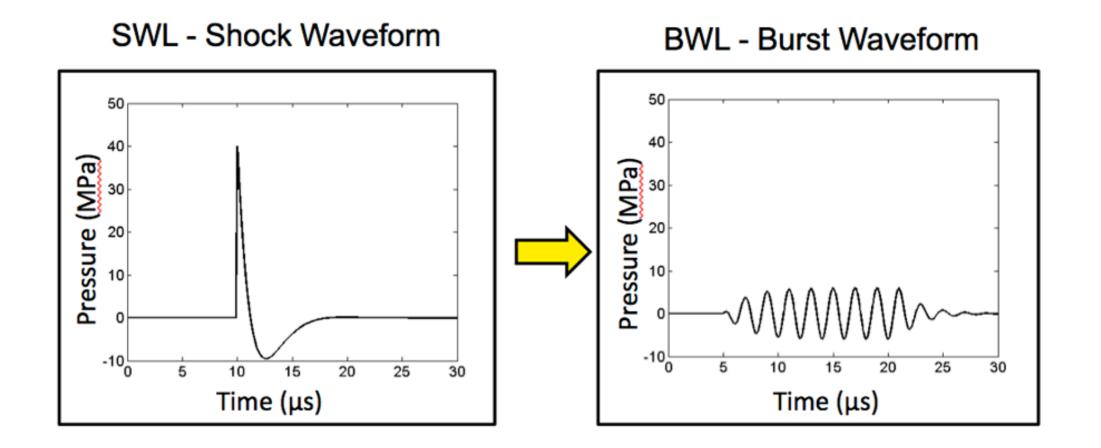
Future direction

- Visio-Track (VT) locking system
- Ultrasonic propulsion of renal and ureteral calculi
- Burst wave lithotripsy
 - Potential to revolutionize the future of SWL

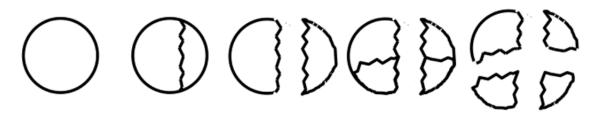
Visio-track configuration

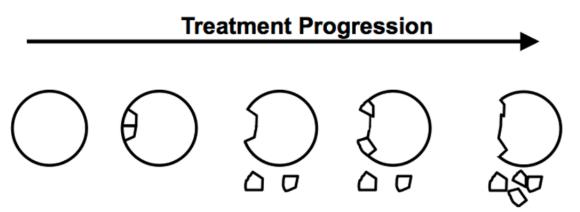


ULTRASONIC PROPULSION

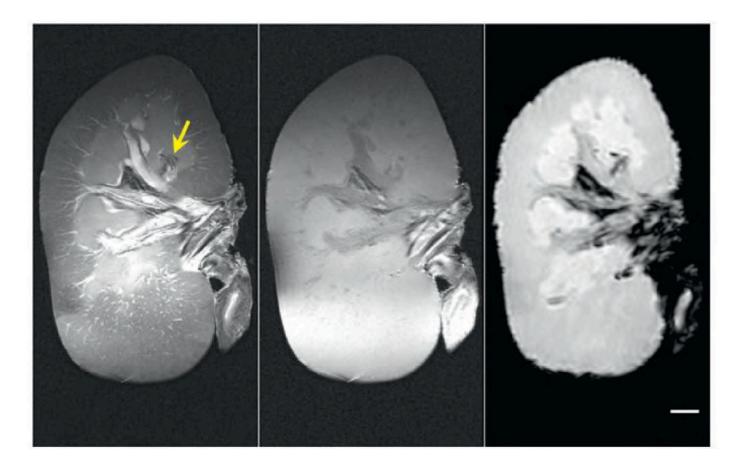


of UROLOGY®


BURST WAVE LITHOTRIPSY (BWL)



Shock Wave Lithotripsy



Burst Wave Lithotripsy

a: Portable Burst Wave Machine

BWL (cont'd) (2025) 43:250 World Journal of Urology https://doi.org/10.1007/s00345-025-05645-x Check for updates REVIEW Burst wave lithotripsy - a paradigm shift: inferences from a scoping Steffi Kar Kei Yuen^{1,2} · Vineet Gauhar^{2,3} · Chu Ann Chai⁴ · Connor M. Forbes⁵ · Victor K. F. Wong⁵ review Ryan F. Paterson⁵ · Ivan Ching Ho Ko¹ · Joseph Li⁶ · Daniele Castellani^{2,7} · Ben H. Chew⁵ Received: 14 March 2025 / Accepted: 16 April 2025 © The Author(s) 2025

BWL

Advantages	👍 Avoids kidney injury	Established clinical data to support and
	demodulate settings for variable	guide best practices
	fragment sizes	
	👍 Can couple with ultrasonic	
	propulsion for clearance of residual	
	fragments post-lithotripsy or stone	
	relocation prior to lithotripsy	
	👍 Portable	
Risks and	A Need to be visualized on	A Possible tissue injury
limitations	ultrasound; effective at a skin-to-stone	
	distance of 4-14cm	

URETEROSCOPY

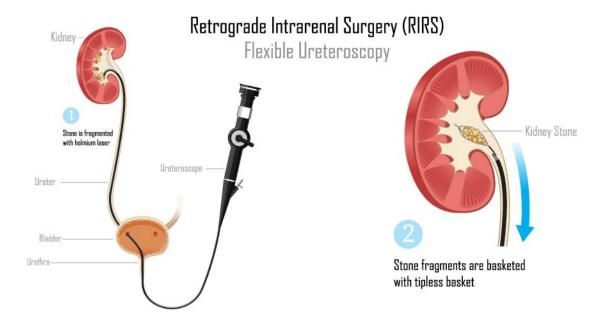
URETEROSCOPY

- Current standard for rigid ureteroscopes is a tip diameter of < 8 French
- Reusable and disposable flexible ureteroscopes allow access to the entire upper collecting system.
- Rigid URS can be used for the whole ureter
 - Rigid, semirigid: mid and distal ureteral stones
 - Flexible: proximal and intrarenal

Deng, T., et al. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J Urol, 2019. 37: 1687.

- Stone-free rates approach 95–100%
 - Dependent on
 - Stone burden
 - Location
 - Length of time that the stone has been impacted
 - Hx of retroperitoneal surgery
 - Experience of the operator.

- URS is the modality of choice for patients with
 - Obesity
 - Hard stones
 - Pregnant
 - Have a bleeding diathesis



- Variety of lithotrites
 - Electrohydraulic
 - Ultrasonic probes
 - Laser systems (most effective)
 - Pneumatic (stone migration)

- Ureteroscopy for renal stones (RIRS)
- Because of
 - Endoscope miniaturization
 - Improved deflection mechanism
 - Enhanced optical quality and tools
 - Introduction of disposables

- Stents should be inserted in patients who are at increased risk of complications
 - Ureteral trauma
 - Residual fragments
 - Bleeding
 - Perforation
 - UTIs
 - Pregnancy
 - Doubtful cases

EAU guidelines on urolithiasis, 2025

- Complication rates are rare (overall 9-25%)
- The rates increase \rightarrow in proximal ureter
- Excessive force with any instrument \rightarrow ureteral injury
- Complications
 - Ureteral stent discomfort (>25 %)
 - Post-operative urosepsis (up to 5%)
 - Ureteral wall injury (5 %)
 - Ureteral avulsion and strictures are rare (1%)

De Coninck, V., et al. Complications of ureteroscopy: a complete overview. World J Urol, 2020. 38: 2147.

ORIGINAL ARTICLE

Check for updates

The effects of shock wave lithotripsy and retrograde intrarenal surgery on renal function

Turgay Turan^a (), Ferruh Kemal Isman^b (), Özgür Efiloğlu^a, Nevin Genc Kahraman^b, Furkan Şendoğan^a, Yavuz Onur Danacioğlu^c, Ramazan Gokhan Atis^a and Asif Yildirim^a ()

^aDepartment of Urology, Istanbul Medeniyet University, Istanbul, Turkey; ^bDepartment, of Biochemistry, Istanbul Medeniyet University, Istanbul, Turkey; ^cDepartment of Urology, Istanbul Bakirkoy Dr. Sadi Konuk Education Research Hospital, Istanbul, Turkey

ABSTRACT

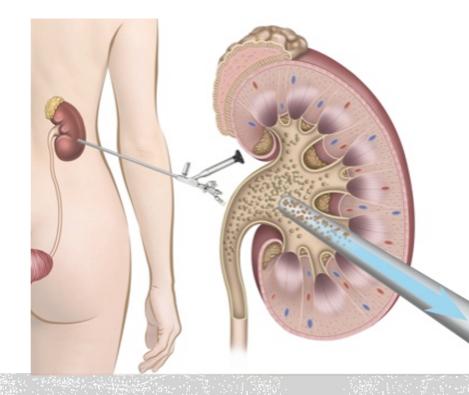
Introduction: The aim of this study was to compare the early effects of shock wave lithotripsy (SWL) and retrograde intrarenal surgery (RIRS) on renal function using the cystatin C levels.

Material and methods: Serum samples were taken from each of the patients preoperatively, on the first postoperative day, and on the 30th postoperative day in order to evaluate the renal damage. The cystatin C level was determined using a particle-enhanced turbid metric immuno-assay with a clinical chemistry analyzer.

Results: In the comparison between the preoperative and postoperative cystatin C levels on day 1, there was an increase in the SWL group (p = .001); however, the decrease in the RIRS group was statistically significant (p = .007). There were statistically significant differences in the cystatin C levels on the first postoperative day in both groups (p = .001). In the SWL group, there was a statistically significant increase between the preoperative and the 30th postoperative day cystatin C levels (p = .006), but no differences were found between these levels in the RIRS group or between the two groups (p = .255).

Conclusions: RIRS may be the preferred procedure for patients who need more renal function protection when treating renal stones <2 cm

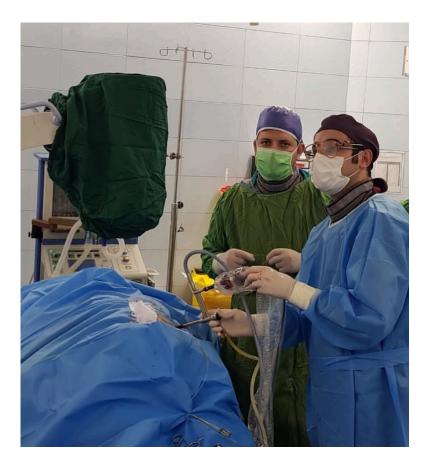
ARTICLE HISTORY

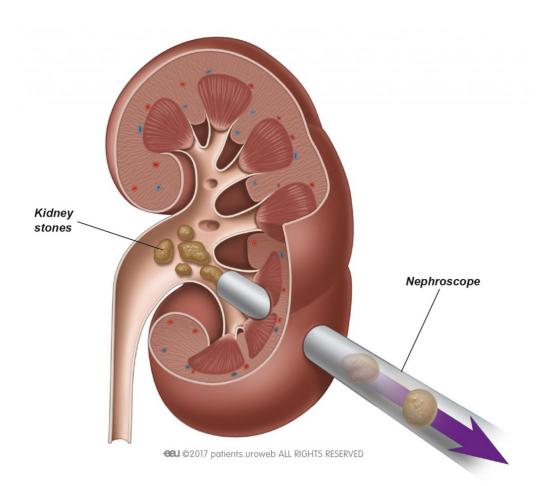

Received 10 July 2019 Accepted 20 February 2020

KEYWORDS

Cystatin C; shockwave lithotripsy; retrograde intrarenal surgery; renal stones

PERCUTANEOUS NEPHROLITHOTOMY

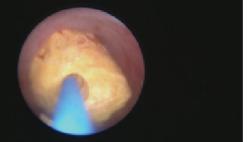



PERCUTANEOUS NEPHROLITHOTOMY

- The standard procedure for large renal calculi
- Usually under GA
- Rigid and flexible endoscopes
- Standard access tracts are 24-30 F
- Prone or supine position
- Fluoroscopy or ultrasound guided
- Inpatient hospital stay of one to three days

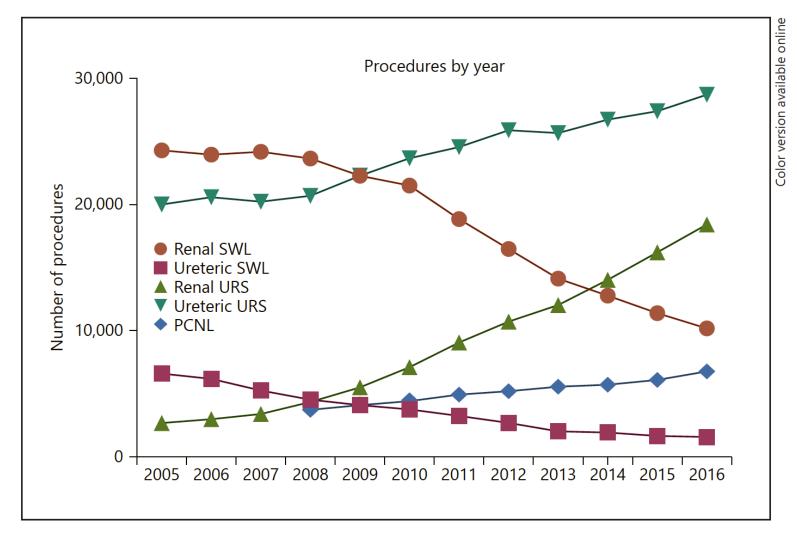
- Contraindications
 - Uncorrected coagulopathy
 - Untreated UTI
 - Tumor in the presumptive access tract area
 - Potential malignant kidney tumor
 - Pregnancy

- Rigid nephroscopy
 - Pneumatic
 - Ultrasonic
 - Laser (for miniaturized devices)
- Flexible endoscope
 - Ho:YAG laser (standard)


Fig. 2 Storz Flexible Ureteroscope Flex – XC

calculi

- Higher complication rate compared with URS and SWL
 - Fever 10.8%
 - Transfusion 7%
 - Thoracic complication 1.5%
 - Sepsis 0.5%
 - Organ injury 0.4%
 - Embolization 0.4%
 - Urinoma 0.2%
 - Death 0.05%


Seitz, C., et al. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol, 2012. 61: 146.

Islammar Thrap Diseases Research

Urolithiasis in Germany: Trends from the National DRG Database

Hendrik Heers^a David Stay^b Thomas Wiesmann^b Rainer Hofmann^a

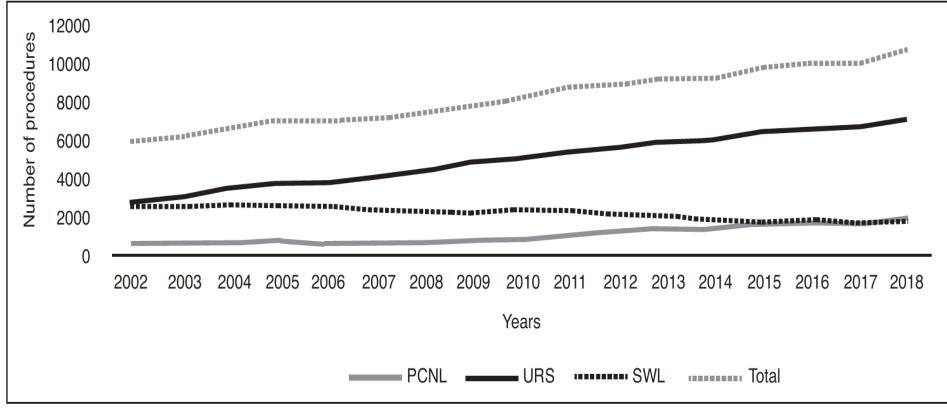


Fig. 3. Surgical intervention rate with percutaneous nephrolithotomy (PCNL), ureteroscopy (URS), and shockwave lithotripsy (SWL) from 2002–2019.

A population-based, retrospective cohort study analyzing contemporary trends in the surgical management of urinary stone disease in adults

Dor Golomb¹; Sumit Dave¹; Fernanda Gabrigna Berto¹; J. Andrew McClure²; Blayne Welk¹; Peter Wang¹; Jennifer Bjazevic¹; Hassan Razvi¹

(46) OTHER PROCEDURES

Complications Fever 10.8% Transfusion 7% Thoracic complication 1.5% Sepsis 0.5% Organ injury 0.4% Embolisation 0.4% Death 0.05%

OTHER PROCEDURES

- Open, laparoscopic, and robotic surgeries are rarely performed
- Selected patients

APPROACH TO URETERAL STONES

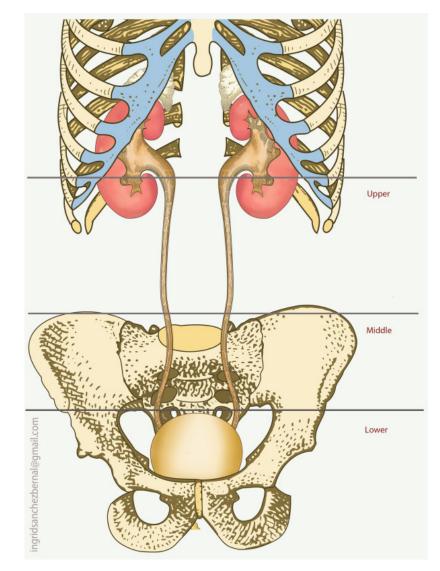
URETERAL STONES

- Indications for active removal of ureteral stones
 - Stones with a low likelihood of spontaneous passage
 - >10mm
 - No movement after 2-3 weeks
 - Not expulsed after 4-6 weeks
 - Persistent pain despite adequate analgesic medication;
 - Persistent obstruction;
 - Renal insufficiency (renal failure, bilateral obstruction, or single kidney).

Skolarikos, A., et al. The role for active monitoring in urinary stones: a systematic review. J Endourol, 2010. 24: 923

EAU guidelines on urolithiasis, 2025

URETERAL STONES

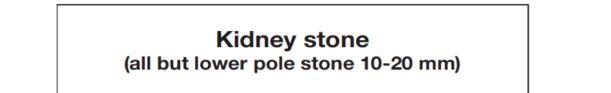

EAU guidelines 2025

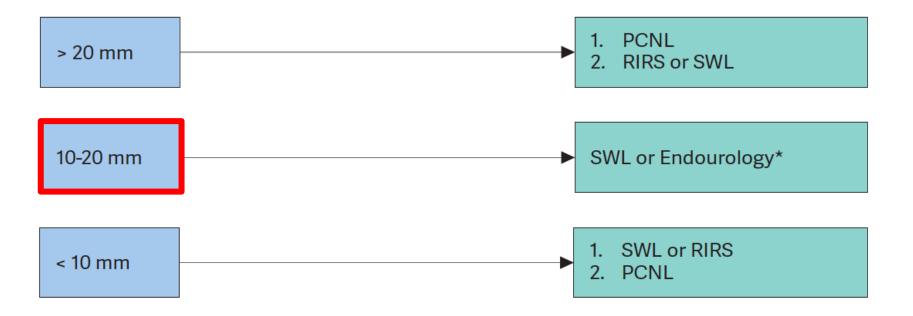
LOCAL APPROACH

Proximal ureteral stone > 10 mm

- Preferred: flexible URS
- SWL (only favorable cases)
 - <15 mm
 - SSD < 10 cm
 - HU < 1000
- Otherwise
 - Try rigid URS
 - Push-back and SWL
 - Push-back and PCNL

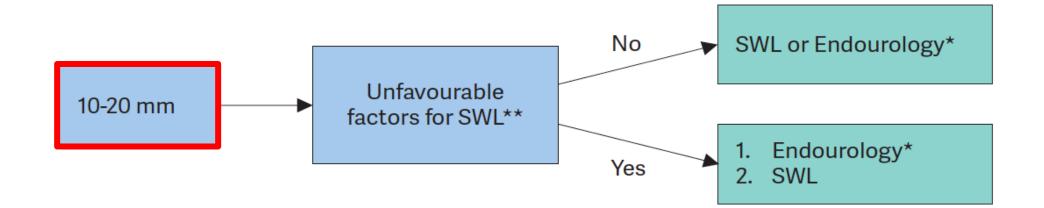
APPROACH TO RENAL STONES




RENAL STONES

- Indications for the removal of renal stones:
 - stone growth;
 - stones in high-risk patients for stone formation;
 - obstruction caused by stones;
 - infection;
 - symptomatic stones (e.g., pain or hematuria);
 - stones > 15 mm;
 - patient preference;
 - comorbidity;
 - social situation of the patient (e.g., profession or travelling);
 - choice of treatment.

RENAL STONES (cont'd)



RENAL STONES (cont'd)

